Neuromodulation of the crab pyloric central pattern generator by serotonergic/cholinergic proprioceptive afferents.
نویسندگان
چکیده
In the stomatogastric nervous system of the crab, Cancer borealis, a set of 4 serotonergic/cholinergic proprioceptive neurons, called gastropyloric receptor (GPR) cells, have effects on the pyloric motor pattern. In a semi-intact foregut preparation, the GPR cells are not activated by movements of the pyloric filter; instead they respond to the slower movements of the gastric mill (Katz et al., 1989). Thus, their activity is not synchronized to the pyloric motor pattern. However, when the GPR cells are stimulated in an in vitro preparation in a manner that resembles their normal firing pattern, they produce dramatic effects on the pyloric motor pattern. These effects include: (1) a prolonged increase in the pyloric cycle frequency, (2) a momentary pause in the motor pattern, (3) transient inhibition of some motor neurons, (4) strong excitation of other motor neurons, and (5) altered phase relationships of the different components of the motor pattern. These changes in the motor pattern are due to direct effects of the GPR cells on neurons in the pyloric central pattern generator (CPG). All of the cells in the pyloric circuit appear to receive GPR input. However, only 2 neurons receive detectable rapid nicotinic synaptic potentials. The other neurons receive only slower neuromodulatory input from GPR stimulation. The neuromodulatory effects include burst enhancement, plateau potential enhancement, excitation, and inhibition. These modulatory effects are largely mimicked by bath-applied serotonin (5-HT). Thus, primary sensory neurons can alter the production of motor patterns by a CPG through a phase-independent mechanism; these proprioceptors do not need to fire at a precise time in the cycle to be effective because their effects are mediated through the slower actions of the neuromodulator 5-HT.
منابع مشابه
Mechanisms for Neuromodulation of Biological Neural Networks
The pyloric Central Pattern Generator of the crustacean stomatogastric ganglion is a well-defined biological neural network. This 14-neuron network is modulated by many inputs. These inputs reconfigure the network to produce multiple output patterns by three simple mechanisms: 1) detennining which cells are active; 2) modulating the synaptic efficacy; 3) changing the intrinsic response properti...
متن کاملMultiple receptors mediate the modulatory effects of serotonergic neurons in a small neural network.
The gastropyloric receptor (GPR) cells are a set of cholinergic/serotonergic mechanosensory neurons that modulate the activity of neural networks in the crab stomatogastric ganglion (STG). Stimulation of these cells evokes a variety of slow modulatory responses in different STG neurons that are mimicked by exogenously applied serotonin (5-HT); these responses include tonic inhibition, tonic exc...
متن کاملSpike timing-dependent serotonergic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit.
Neuromodulation is often thought to have a static, gain-setting function in neural circuits. Here we report a counter example: the neuromodulatory effect of a serotonergic neuron is dependent on the interval between its spikes and those of the neuron being modulated. The serotonergic dorsal swim interneurons (DSIs) are members of the escape swim central pattern generator (CPG) in the mollusk Tr...
متن کاملControl of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output.
In the lobsters Fasus lalandii and Palinurus vulgaris, the rhythmical activity of the pyloric pattern generator of the stomatogastric nervous system is strongly modified by the firing of a single identified interneurone, whose activity we have recorded from the cell body, in vitro. The cell body of this interneurone, the anterior pyloric modulator (APM), is located in the oesophageal ganglion a...
متن کاملParallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior.
Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most like...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 10 5 شماره
صفحات -
تاریخ انتشار 1990